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ABSTRACT 
In this paper, we describe the solutions developed to address key 
technical challenges encountered while building a distributed 
database system that can smoothly handle demanding real-time 
workloads and provide a high level of fault tolerance. 
Specifically, we describe schemes for the efficient clustering and 
data partitioning for the automatic scale out of processing across 
multiple nodes and for optimizing the usage of CPUs, DRAM, 
SSDs and networks to efficiently scale up performance on one 
node. 
The techniques described here were used to develop Aerospike 
(formerly Citrusleaf), a high performance distributed database 
system built to handle the needs of today’s interactive online 
services. Most real-time decision systems that use Aerospike 
require very high scale and need to make decisions within a strict 
SLA by reading from, and writing to, a database containing 
billions of data items at a rate of millions of operations per second 
with sub-millisecond latency. For over five years, Aerospike has 
been continuously used in over a hundred successful production 
deployments, as many enterprises have discovered that it can 
substantially enhance their user experience.  

1. INTRODUCTION 
Real-time Internet applications typically require very high scale; 
they also need to make decisions within a strict SLA. This 
typically requires these applications to read from, and write to, a 
database containing billions of data items at a rate of millions of 
operations per second with sub-millisecond latency. Therefore, 
such applications require extremely high throughput, low latency 
and high uptime. Furthermore, such real-time decision systems 
have a tendency to increase their data usage over time to improve 
the quality of their decisions, i.e., the more data can be accessed in 
a fixed amount of time, the better the decision becomes. 

The original need for such systems originated in Internet 
advertising technology that uses real-time bidding [27]. The 
Internet advertising ecosystem has evolved with many different 
players interacting with each other in real time to provide the 

correct advertisement to a user, based on that user’s behavior. You 
can see the basic architecture of the ecosystem illustrated in 
Figure 1. 

 

Figure 1: RTB technology stack 
In order to participate in the real-time bidding [22] process, every 
participant in this ecosystem needs to have a high-performance 
read-write database with the following characteristics: 

• Sub-millisecond database access times to support an 
SLA of 50ms for real-time bidding and 100ms for 
rendering the ad itself 

• Extremely high throughput of 50/50 read-write load, 
e.g., 3 to 5 million operations/second for North America 
alone 

• Database with billions of objects each with sizes 
between 1KB and 100KB, for a total DB size of 10-
100TB 

• Fault-tolerant service that can handle these mission-
critical interactions for revenue generation with close to 
100% uptime 

• Global data replication across distributed data centers 
for providing business continuity during catastrophic 
failures 

As has been the case in the Internet industry for a while now, 
recently, traditional enterprises have also experienced a huge 
increase in their need for real-time decision systems. Here are a 
few examples: 
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In Financial Services, the recent explosion in mobile access to 
applications has increased the load on customer facing 
applications by an order of magnitude. This requires enterprises to 
shield traditional DBMSs by offloading the new workload to a 
high-performance read-write database while still maintaining the 
original data (and a few core applications) in the traditional 
DBMS.

 
Figure 2: Financial services technology stack 

As shown in Figure 2, a database like Aerospike is used as the 
system of record during the trading period while compliance 
related applications still run on the master DBMS. 

In the electronic payments world, fraud detection requires a 
sophisticated rules-based decision engine that decides whether or 
not to approve a transaction based on the customer’s past 
purchases (i.e., transaction history), and the kind of purchase they 
are making right now, from which device, and to which payee. All 
required data sets reside in a high performance DBMS that can 
support real-time read-write access from fraud detection 
algorithms, as shown in Figure 3. 

 
Figure 3: Fraud detection technology stack 

Previously, Telecommunication Providers (Telcos) had been 
using home grown real-time billing systems for tracking voice 
calls.  However, tracking the mobile data traffic that is dominating 
their network today creates additional load that is several orders of 
magnitude higher than the previous load for tracking voice traffic. 
The typical use case here involves using a very fast in-memory 
database at the edge of the network to monitor traffic patterns and 
generate billing events. Changes to a user’s data plans are 
immediately reflected in the switches that direct traffic to and 
from devices, as shown in Figure 4. 

Based on the above, it is clear that real-time applications 
originally pioneered in the Internet industry are crossing over into 
traditional Enterprises in a big way. 

 
Figure 4: Telco technology stack 

In these systems, a small number of business transactions (e.g., 
500 to 1000 per second) typically result in a hundred-fold (or even 
thousand-fold) increase in database operations, as shown in Figure 
5. The decision engine typically uses sophisticated algorithms to 
combine the real-time state (of user, device, etc.) with applicable 
insights to decide on a suitable action within a short amount of 
time (typically 50-250 milliseconds). 

 
Figure 5: Real-time decision engine 

An important commonality observed in these use cases is that 
each is mission-critical and requires much higher performance at 
scale than that provided by previous generations of operational 
database systems. We will describe in the subsequent sections the 
key technical aspects of next-generation operational DBMSs 
needed to deliver such high scale, real-time processing to all 
enterprises. 

The rest of the paper is organized as follows. Section 2 describes 
the distributed system architecture and addresses issues related to 
scale-out under the sub-topics of cluster management, data 
distribution and client/server interaction. Section 3 gives a brief 
overview of geographical replication. Section 4 talks about system 
level optimization and tuning techniques to achieve the highest 
levels of scale-up possible. Section 5 talks about storage 
architecture and how it leverages SSD technology. Section 6 
presents some cloud benchmark results. Finally, Section 7 
presents our conclusion. 

2. AEROSPIKE ARCHITECTURE 
The Aerospike database platform (Figure 6) is modeled on the 
classic shared-nothing database architecture [25]. The database 
cluster consists of a set of commodity server nodes, each of which 
has CPUs, DRAMs, rotational disks (HDDs) and optional flash 
storage units (SSDs). These nodes are connected to each other 
using a standard TCP/IP network. 
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Client applications issue primary index based read/write/batch 
operations and secondary-index based queries against the cluster 
via client libraries that provide a native language interface 
idiomatic to each language. Client libraries are available for 
popular programming languages, viz. Java, C/C++, Python, PHP, 
Ruby, Go, JavaScript and C#. 

 
Figure 6: Aerospike architecture 

2.1 Cluster Management 
The cluster management subsystem handles node membership and 
ensures that all the nodes in the system come to a consensus on 
the current membership of the cluster. Events such as network 
faults and node arrival or departure trigger cluster membership 
changes. Such events can be both planned and unplanned. 
Examples of such events include randomly occurring network 
disruptions, scheduled capacity increments, and 
hardware/software upgrades. 
The specific objectives of the cluster management subsystem are: 

• Arrive at a single consistent view of current cluster 
members across all nodes in the cluster. 

• Automatically detect new node arrival/departure and 
seamless cluster reconfiguration. 

• Detect network faults and be resilient to such network 
flakiness. 

• Minimize time to detect and adapt to cluster 
membership changes. 

2.1.1 Cluster View 
Each Aerospike node is automatically assigned a unique node 
identifier, which is a function of its MAC address and of the 
listening port. Cluster view is defined by the tuple: <cluster_key, 
succession_list> where, 

• cluster_key is a randomly generated 8-byte value that 
identifies an instance of the cluster view. 

• succession_list is the set of unique node identifiers that 
are part of the cluster. 

The cluster key uniquely identifies the current cluster membership 
state, and changes every time the cluster view changes. It enables 
Aerospike nodes to differentiate between two cluster views with 
an identical set of member nodes. 
Every change to the cluster view has a significant effect on 
operation latency and, in general, on the performance of the entire 

system. This means there is a need to quickly detect node 
arrival/departure events, and subsequently, for an efficient 
consensus mechanism to handle any changes to the cluster view. 

2.1.2 Cluster Discovery  
Node arrival or departure is detected via heartbeat messages 
exchanged periodically between nodes. Every node in the cluster 
maintains an adjacency list, which is the list of other nodes that 
have recently sent heartbeat messages to this node. Nodes 
departing the cluster are detected by the absence of heartbeat 
messages for a configurable timeout interval; after this, they are 
removed from the adjacency list.  
The main objectives of the detection mechanism are: 

• To avoid declaring nodes as departed because of 
sporadic and momentary network glitches. 

• To prevent an erratic node from frequently joining and 
departing from the cluster. A node could behave 
erratically due to system level resource bottlenecks in 
the use of CPU, network, disk, etc. 

The following sections describe how the aforementioned 
objectives are achieved: 

2.1.2.1 Surrogate heartbeats 
In the flaky or choked network, it is possible to arbitrarily lose 
certain packets. Therefore, in addition to regular heartbeat 
messages, nodes use other messages that are regularly exchanged 
between nodes as an alternative secondary heartbeat mechanism. 
For instance, replica writes are used as a surrogate for heartbeat 
messages. This ensures that, as long as either the primary or 
secondary heartbeat communication between nodes is intact, 
network flakiness on the primary heartbeat channel alone will not 
affect the cluster view. 

2.1.2.2 Node Health Score 
Every node in the cluster evaluates the health score of each of its 
neighboring nodes by computing the average message loss, which 
is an estimate of how many incoming messages from that node are 
lost. This is computed periodically as a weighted moving 
average of the expected number of messages received per node 
versus the actual number of messages received per node, as 
follows. 
Let t be the heartbeat messages transmit interval, w be the length 
of the sliding window over which average is computed, r be the 
number of heartbeat messages received in this window, lw be the 
fraction of messages lost in this window, α be a smoothing factor 
and la(prev) be the average message loss computed until now. la(new), 
the updated average loss, is then computed as follows: 
 

lw = messages lost in window  / messages expected in 
window 
    = (w * t - r) / (w * t) 
la(new) = (α * la(prev)) + (1 - α) * lw 
 

A node whose average message loss exceeds twice the standard 
deviation across all nodes is an outlier and deemed unhealthy. An 
erratically behaving node typically has a high average message 
loss and also deviates significantly from the average node 
behavior. If an unhealthy node is a member of the cluster, it is 
removed from the cluster. If it is not a member, it is not 
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considered for membership until its average message loss falls 
within tolerable limits. In practice, α is set to 0.95, giving more 
weightage to average value over recent ones. The window length 
is 1000ms.  

2.1.3 Cluster View Change 
Changes to the adjacency list, as described in Section 2.1.2, 
trigger a run of the Paxos consensus algorithm [20] that arrives at 
the new cluster view. A node that sees its node identifier as the 
highest in its adjacency list acts as a Paxos proposer and assumes 
the role of the Principal. The Paxos Principal then proposes a new 
cluster view. If the proposal is accepted, nodes begin 
redistribution of the data to maintain uniform data distribution 
across the new set of cluster nodes. A successful Paxos round 
takes 3 network round trips to converge, assuming there are no 
opposing proposals. 

The Aerospike implementation works to minimize the number of 
transitions the cluster would undergo as an effect of a single fault 
event. For example, a faulty network switch could make a subset 
of the cluster members unreachable. Once the network is restored, 
there would be a need to add these nodes back to the cluster.   
If each lost or arriving node triggers the creation of a new cluster 
view, the number of cluster transitions would equal the number of 
nodes lost or added. To minimize such transitions, which are 
fairly expensive in terms of time and resources, nodes make 
cluster change decisions only at the start of fixed cluster change 
intervals (the time of the interval itself is configurable). The idea 
here is to avoid reacting too quickly to node arrival and departure 
events, as detected by the heartbeat subsystem, and instead, 
process a batch of adjacent node events with a single cluster view 
change. This avoids a lot of potential overhead caused by 
duplicate cluster view changes and data distributions. A cluster 
change interval equal to twice the timeout value of a node ensures 
that all nodes failing due to a single network fault are definitely 
detected in a single interval. It will also handle multiple fault 
events that occur within a single interval. 

Aerospike’s cluster management scheme allows for multiple node 
additions or removals at a time. This provides an advantage over 
schemes that require node additions to occur one node at a time. 
With Aerospike, the cluster can immediately be scaled out to 
handle spikes in load, without downtime.  

2.2 Data Distribution 
Aerospike distributes data across nodes as shown in Figure 7. A 
record’s primary key is hashed into a 160-byte digest using the 
RipeMD160 algorithm, which is extremely robust against 
collisions [12]. The digest space is partitioned into 4096 non-
overlapping ‘partitions’. It is the smallest unit of data ownership 
in Aerospike. Records are assigned partitions based on the 
primary key digest. Even if the distribution of keys in the key 
space is skewed, the distribution of keys in the digest space and 
therefore in the partition space is uniform. This data-partitioning 
scheme is unique to Aerospike and it significantly contributes to 
avoiding the creation of hotspots during data access, which helps 
achieve high levels of scale and fault tolerance. 

Aerospike colocates indexes and data to avoid any cross-node 
traffic when running read operations or queries. Writes may 
require communication between multiple nodes based on the 
replication factor. Colocation of index and data, when combined 
with a robust data distribution hash function, results in uniformity 
of data distribution across nodes. This, in turn, ensures that: 

1. Application workload is uniformly distributed across the 
cluster, 

2. Performance of database operations is predictable, 
3. Scaling the cluster up and down is easy, and  
4. Live cluster reconfiguration and subsequent data 

rebalancing is simple, non-disruptive and efficient. 
 

 
Figure 7: Data distribution 

A partition assignment algorithm generates a replication list for 
every partition. The replication list is a permutation of the cluster 
succession list. The first node in the partition's replication list is 
the master for that partition, the second node is the first replica, 
the third node is the second replica, and so on. The result of 
partition assignment is called a partition map. Also note that, in a 
well-formed cluster, there is only one master for a partition at any 
given time. By default, all the read/write traffic is directed toward 
master nodes. Reads can also be uniformly spread across all the 
replicas via a runtime configuration setting. Aerospike supports 
any number of copies, from a single copy to as many copies as 
there are nodes in the cluster. 
The partition assignment algorithm has the following objectives: 

1. Be deterministic so that each node in the distributed 
system can independently compute the same partition 
map, 

2. Achieve uniform distribution of master partitions and 
replica partitions across all nodes in the cluster, and 

3. Minimize movement of partitions during cluster view 
changes. 

The algorithm is described as pseudo code in  

Table 1 and is deterministic, achieving objective 1. The heart of 
the assignment is the NODE_HAS_COMPUTE function, which 
maps a node id and a partition id to a hash value. Note that a 
specific node’s position in the partition replication list is its sort 
order based on the node hash. We have found that running a 
Jenkins one-at-a-time [19] hash on the FNV-1a [13] hashes of the 
node and partition ids gives a fairly good distribution and achieves 
objective 2 as well. 
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Figure 8(a) shows the partition assignment for a 5-node cluster 
with a replication factor of 3. Only the first three columns (equal 
to the replication factor) in the partition map are used; the last two 
columns are unused. 

Table 1:  Partition assignment algorithm 

function REPLICATION_LIST_ASSIGN(partitionid) 
   node_hash = empty map 
   for  nodeid in succession_list: 
       node_hash[nodeid] = NODE_HASH_COMPUTE(nodeid, 
partitionid) 
   replication_list = sort_ascending(node_hash using hash) 
   return replication_list 
 
function NODE_HASH_COMPUTE(nodeid, partitionid): 
   nodeid_hash = fnv_1a_hash(nodeid) 
   partition_hash = fnv_1a_hash(partitionid) 

   return jenkins_one_at_a_time_hash(<nodeid_hash, 
partition_hash>) 

 

Consider the case where a node goes down. It is easy to see from 
the partition replication list that this node would simply be 
removed from the replication list, causing a left shift for all 
subsequent nodes as shown in Figure 8(b). If this node did not 
host a copy of the partition, this partition would not require data 
migration. If this node hosted a copy of the data, a new node 
would take its place. This would, therefore, require copying the 
records in this partition to the new node. Once the original node 
returns and becomes part of the cluster again, it would simply 
regain its position in the partition replication list, as shown in 
Figure 8(c).  Adding a brand-new node to the cluster would have 
the effect of inserting this node at some position in the various 
partition replication lists, and, therefore, result in the right shift of 
the subsequent nodes for each partition. Assignments to the left of 
the new node are unaffected. 

 
Figure 8: Master/replica assignment 

The discussion above gives an idea of the way in which the 
algorithm minimizes the movement of partitions (a.k.a. 

migrations) during cluster reconfiguration. Thus the assignment 
scheme achieves objective 3. 

When a node is removed and rejoins the cluster, it would have 
missed out on all transactions applied while it was away and 
would need to catch up. Alternatively, when a brand new node 
joins a running cluster with lots of existing data, and happens to 
own a replica or master copy of a partition, the new node needs to 
obtain the latest copy of all the records in that partition and to also 
be able to handle new read and write operations. The mechanisms 
by which these issues are handled are described below in section 
2.2.1. 

2.2.1 Data Migrations 
The process of moving records from one node to another node is 
termed a migration. After every cluster view change, the objective 
of data migration is to have the latest version of each record 
available at the current master and replica nodes for each of the 
data partitions. Once consensus is reached on a new cluster view, 
all the nodes in a cluster run the distributed partition assignment 
algorithm and assign the master and one or more replica nodes to 
each of the partitions. 
The master node of each partition assigns a unique partition 
version to that partition. This version number is copied over to the 
replicas. After a cluster view change, the partition versions for 
every partition with data are exchanged between the nodes. Each 
node thus knows the version numbers for every copy of the 
partition.  

2.2.1.1 Delta-Migrations  
Aerospike uses a few strategies to optimize migrations by 
reducing the effort and time they take, as follows. 

Define a notion of partition ordering using versions that helps 
determine whether a partition retrieved from disk needs to be 
migrated or not. The process of data migration would be a lot 
more efficient and easy if a total order could be established over 
partition versions. For example, if the value of a partition’s 
version on node 1 is less than the value of the same partition’s 
version on node 2, the partition version on node 1 could be 
discarded as obsolete. However, enforcing total ordering of 
partition version numbers is problematic. When version numbers 
diverge on cluster splits caused by network partitions, this would 
require the partial order to be extended to a total order (order 
extension principle). Yet, this would still not guarantee the 
retention of the latest versions of each record since the system will 
end up either choosing the entire version of the partition, or 
completely rejecting it. Moreover, the amount of information 
needed to create a partial order on version numbers would only 
grow with time. Aerospike maintains this partition lineage up to 
certain degree. 

When two versions come together, nodes negotiate the difference 
in actual records and send over the data corresponding only to the 
differences between the two partition versions. 

In certain cases, migration can be avoided completely based on 
partition version order. In other cases, like rolling upgrades, the 
delta of changes may be small and could be shipped over and 
reconciled instead of shipping the entire partition content. 

2.2.1.2 Operations During Migrations 
If a read operation lands on a master node while migrations are in 
progress, Aerospike guarantees that the copy of the record that 
eventually wins will be returned. For partial writes to a record, 
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Aerospike guarantees that the partial write will happen on the 
copy that eventually wins. 

To ensure these semantics, operations enter a duplicate resolution 
phase during migrations. During duplicate resolution, the node 
containing the master copy of the partition for a specific record 
reads the record across all its partition versions and resolves to 
one copy of the record (the latest). This is the winning copy and it 
is henceforth used for the read or write transaction. 

2.2.1.3 Master Partition Without Data 
An empty node newly added to a running cluster will be master 
for a proportional fraction of the partitions and have no data for 
those partitions. A copy of the partition without any data is 
marked to be in a DESYNC state. All read and write requests on a 
partition in DESYNC state will necessarily involve duplicate 
resolution since it has no records. One of Aerospike’s 
optimizations involves electing the partition version with the 
highest number of records as the acting master for this partition. 
All reads are directed to the acting master. If the client 
applications are satisfied with reading older versions of records, 
duplicate resolution on reads can be turned off. Thus, read 
requests for records present on the acting master will not require 
duplicate resolution and have nominal latencies. This acting 
master assignment only lasts until migration is complete for this 
partition. 

2.2.1.4 Migration Ordering 
Clearly, duplicate resolution adds to the latency when migrations 
are ongoing in the cluster. Therefore, it is important to complete 
migrations as quickly as possible. However, a migration cannot be 
prioritized over normal read/write operations and other cluster 
management operations. Given this constraint, Aerospike applies 
a couple of heuristics to reduce the impact of data migrations on 
normal application read/write workloads. 

2.2.1.4.1 Smallest Partition First 
Migration is coordinated in such a manner as to let nodes with the 
fewest records in their partition versions start migration first. This 
strategy quickly reduces the number of different copies of a 
specific partition, and does this faster than any other strategy. This 
implies that duplicate resolution would need to talk to a fewer 
number of nodes over time as smaller sized versions finish 
migration first and latency improves as migrations complete. 

2.2.1.4.2 Hottest Partition First 
At times, client accesses are skewed to a very small number of 
keys from the key space. Therefore the latency on these accesses 
could be improved quickly by migrating these hot partitions 
before other partitions, thus reducing the time spent in duplicate 
resolution.  

2.2.2 Scheduled Maintenance 
Node restarts for maintenance, though not very frequent, are 
unavoidable. The cluster runs at reduced capacity when a node is 
down; it is therefore important to reduce node downtime. The 
contributors to downtime are: 

1. Maintenance time, and 
2. Time to load the Aerospike primary index. 

Aerospike’s primary index is in-memory and not stored on a 
persistent device. On a node restart, if the data is stored on disk, 
the index is rebuilt by scanning records on the persistent device. 

The time taken to complete index loading is then a function of the 
number of records on that node, and of the device speed. 

To avoid rebuilding the primary index on every process restart, 
Aerospike’s primary index is stored in a shared memory space 
disjoint from the service process’s memory space. In case 
maintenance only requires a restart of the Aerospike service, the 
index need not be reloaded. The service attaches to the current 
copy of the index and is ready to handle transactions. This form of 
service start re-using an existing index is termed ‘fast start’; it 
eliminates scanning the device to rebuild the index. 

2.2.3 Summary 
Uniform distribution of data, associated metadata like indexes, 
and transaction workload make capacity planning and scaling up 
and down decisions precise and simple for Aerospike clusters. 
Aerospike needs redistribution of data only on changes to cluster 
membership. This contrasts with alternate key range based 
partitioning schemes, which require redistribution of data 
whenever a range becomes “larger” than the capacity on its node. 

2.3 Client-Server 
Databases don’t exist in isolation. They must therefore be 
architected as part of the full stack so that the end-to-end system 
scales. The client layer needs to absorb the complexity of 
managing the cluster. There are various challenges to overcome 
here and a few of them are addressed below. 

2.3.1 Discovery 
The client needs to know about all the nodes of the cluster and 
their roles. In Aerospike, each node maintains a list of its 
neighboring nodes. This list is used for the discovery of the cluster 
nodes. The client starts with one or more seed nodes and discovers 
the entire set of cluster nodes. Once all nodes are discovered, the 
client needs to know the role of each node. As described in 
section 2.2, each node owns a master or replica for a subset of 
partitions out of the total set of partitions. This mapping from 
partition to node (partition map) is exchanged and cached with the 
clients. Sharing of the partition map with the client is critical in 
making client-server interactions extremely efficient. This is why, 
in Aerospike, there is single-hop access to data from the client. In 
steady state, the scale-out ability of the Aerospike cluster is purely 
a function of the number of clients or server nodes. This 
guarantees the linear scalability of the system as long as other 
parts of the system – like network interconnect – can absorb the 
load. 

2.3.2 Information Sharing 
Each client process stores the partition map in its memory. To 
keep the information up to date, the client process periodically 
consults the server nodes to check if there are any updates. It does 
this by checking the version that it has stored locally against the 
latest version of the server. If there is an update, it requests for the 
full partition map.  
Frameworks like php-cgi, node.js cluster can run multiple 
instances of the client process on each machine to get more 
parallelism. As all the instances of the client are on the same 
machine, they should be able to share this information between 
themselves.  Aerospike uses a combination of shared memory and 
robust mutex code from the pthread library to solve the 
problem. Pthread mutexes support the following properties that 
can be used across processes: 
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PTHREAD_MUTEX_ROBUST_NP 
PTHREAD_PROCESS_SHARED 

A lock is created in a shared memory region with these properties 
set. All the processes compete periodically (once every second) to 
take the lock. Yet, only one process will get the lock. The process 
that gets the lock fetches the partition map from the server nodes 
and shares it with other processes via shared memory. If the 
process holding the lock dies, and when a different process tries to 
get the lock, it gets the lock with the return code EOWNERDEAD. It 
should call pthread_mutex_consistent_np()to make 
the lock consistent for further use. After this, it is business as 
usual. 

2.3.3 Cluster Node Handling 
For each of the cluster node, at the time of initialization, the client 
creates an in-memory structure on behalf of that node and stores 
its partition map. It also maintains a connection pool for that node. 
All of this is torn down when the node is declared down. The 
setup and tear-down is a costly operation. Also, in case of failure, 
the client needs to have a fallback plan to handle the failure by 
retrying the database operation on the same node or on a different 
node in the cluster. If the underlying network is flaky and this 
repeatedly happens, this can end up degrading the performance of 
the overall system. This leads to the need of having a balanced 
approach to identifying cluster node health. The following 
strategies are used by Aerospike to achieve this balance.  

2.3.3.1 Health Score 
The client’s use of transaction response status code alone as a 
measure of the state of the DBMS cluster is a sub-optimal scheme. 
The contacted server node may temporarily fail to accept the 
transaction request. Or it could be that there is a transient network 
issue, while the server node itself is up and healthy. To discount 
such scenarios, clients track the number of failures encountered by 
the client on database operations at a specific cluster node. The 
client drops a cluster node only when the failure count (a.k.a 
“happiness factor”) crosses a particular threshold. Any successful 
operation to that node will reset the failure count to 0.  

2.3.3.2 Cluster Consultation  
Flaky networks are often tough to handle. One-way network 
failures (A sees B, but B does not see A) are even tougher. There 
can be situations where the cluster nodes can see each other but 
the client is unable to see some cluster nodes directly (say, X). In 
these cases, the client consults all the nodes of the cluster visible 
to itself and sees if any of these nodes has X in their neighbor list. 
If a client-visible node in the cluster reports that X is in its 
neighbor list, the client does nothing. If no client-visible cluster 
nodes report that X is in their neighbor list, the client will wait for 
a threshold time and then permanently remove the node by tearing 
down the data structures referencing the removed node. Over 
several years of deployments, we found that this scheme greatly 
improved the stability of the overall system. 

3. CROSS DATACENTER REPLICATION 
This section describes how to stitch together multiple DBMS 
clusters in different geographically distributed data centers to 
build a globally replicated system. Cross Datacenter Replication 
(XDR) supports different replication topologies, including active-
active, active-passive, chain, star, and multi-hop configurations.  

3.1.1 Load Sharing 
In a normal deployment state (i.e., when there are no failures), 
each node logs the operations that happen on that node for both 
the master and replica partitions. But each node only ships to 
remote clusters the data for master partitions on that node. The 
changes logged on behalf of replica partitions are used only when 
there are node failures. If a node fails, all the other nodes detect 
this failure and takeover the pending work on behalf of the failed 
node. This scheme scales horizontally as one can just add more 
nodes to handle increasing replication load. 

3.1.2 Data Shipping 
When a write happens, the system first logs the change, reads the 
whole record and ships it. There are a few optimizations to save 
the amount of data read locally and shipped across.  

The data is read in batches from the log file. We first see if the 
same record is updated multiple times in the same batch. The 
record is read exactly once on behalf of all the changes in that 
batch. Once the record is read, we compare its generation with the 
generation recorded in the log file. If the generation on the log file 
is less than the generation of the record, we skip shipping the 
record. There is an upper bound on the number of times we skip 
the record, as the record may never be shipped if the record is 
getting updated continuously. These optimizations provide a huge 
benefit when there are hot keys in the system whose records are 
updated frequently. 

3.1.3 Remote Cluster Management 
The XDR component on each node acts as a client to the remote 
cluster. It performs all the roles just like a regular client, i.e., it 
keeps track of remote cluster state changes, connects to all the 
nodes of the remote cluster, maintains connection pools, etc. 
Indeed, this is a very robust distributed shipping system as there is 
no single point of failure. All nodes in the source cluster ship data 
proportionate to their partition ownership and all nodes in the 
destination cluster receive data in proportion to their partition 
ownership. This shipping algorithm allows both source and 
destination clusters to have different cluster sizes.  
Our model ensures that clusters continue to ship new changes as 
long as there is at least one surviving node in the source or 
destination clusters. It also adjusts very easily to new node 
additions in source or destination clusters and is able to equally 
utilize all the resources in both clusters.  

3.1.4 Pipelining 
For cross data-center shipping, Aerospike uses an asynchronous 
pipelined scheme. As mentioned in section 3.1.3, each node in the 
source cluster communicates with all the nodes in the destination 
cluster. Each shipping node keeps a pool of 64 open connections 
that are used in a round robin manner to ship records. The record 
is shipped asynchronously, i.e., multiple records are shipped on 
the open connection; afterwards, the source waits for the 
responses. So, at any given point in time, there can be multiple 
records on the connection waiting to be written at the destination. 
This pipelined model is the main way we are able to deliver high 
throughput on high-latency connections over WAN. When the 
remote node writes the shipped record, it sends an 
acknowledgement back to the shipping node with the return code. 
We set an upper limit on the number of records that can be 
inflight for the sake of throttling network utilization. 
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4. OPTIMIZATIONS FOR SCALE UP 
For a system to operate at extremely high throughput with low 
latency, we have found that it is necessary not just to scale out 
across nodes, but also to scale up on one node. This section talks 
about system-level details, which help Aerospike scale up to 
millions of transactions per second at sub-millisecond latencies 
per node. The techniques covered here apply to any data storage 
system in general. The ability to scale up on nodes effectively 
means the following: 

1. Scaling up to higher throughput levels on fewer nodes. 

2. Better failure characteristics, since probability of a node 
failure typically increases as the number of nodes in a 
cluster increase. 

3. Easier operational footprint. Managing a 10-node 
cluster versus a 200-node cluster is a huge win for 
operators. 

4. Lower total cost of ownership. This is especially true 
once you factor in SSD-based scaling described in 
section 5. 

The basic philosophy here is to enable the system to take full 
advantage of the hardware by leveraging it in the best way 
possible. 

4.1.1 Multi-Core System 
Contemporary commodity processors have a multi-core, multi-
socket architecture [15] with up to 64 cores. Caches in these 
systems have Non-Uniform Memory Access (NUMA) [24], which 
allow system memory bandwidth to scale with an increasing 
amount of physical processors. System memory in this kind of 
setup has asymmetric latency and throughput behavior based on 
access to data in the local cache in the same socket (vs. remotely 
from another socket). Applications sensitive to latency would 
require memory traffic to stay local and need to use a threading 
model that has locality of access per-socket, in order to be able to 
scale with the number of physical processors. 

 
Figure 9: Multi-core architecture 

Aerospike, as shown in Figure 9, groups multiple threads per CPU 
socket instead of per core, thus aligning with a NUMA node. 
These transaction threads are also associated with specific I/O 

devices. The interrupt processing for the client side network 
communication and disk side I/O is also bound to the core where 
these threads are running. This helps reduce the amount of shared 
data accessed across multiple NUMA regions, and reduces latency 
cost.   

4.1.2 Context Switch 
Another major factor working against the performance of a low 
latency system is thread context switch [10]. To avoid costs 
associated with context switches, operations in Aerospike are run 
in the network listener thread itself. To fully exploit parallelism, 
the system creates as many network listeners as there are cores. 
The client request is received, processed and responded back to, 
without yielding the CPU. In this model, it is necessary that the 
implementation be non-blocking, short, and predictable, so that 
the response at the network happens in real time. 

4.1.3 Memory Fragmentation 
Aerospike handles all its memory allocation natively rather than 
depend on the programming language or on a runtime system. To 
this effect, Aerospike implements various special-purpose slab 
allocators to handle different object types within the server 
process. Aerospike's in-memory computing solution effectively 
leverages system resources by keeping the index packed into 
RAM. With ever increasing data size, hardware (RAM sizes > 
100s GB), and high transaction rates, memory fragmentation is a 
major challenge. 

 
Figure 10: Memory arena assignment 

To deal with such fragmentation, Aerospike chose to integrate 
with the jemalloc memory allocator library [18]. Beyond 
simply relying on the allocator to be internally efficient, we have 
used a few key extensions of jemalloc over the standard C 
library memory allocation interface in order to direct the library to 
store classes of data objects according to their characteristics. 
Specifically, as shown in Figure 10, by grouping data objects by 
namespace into the same arena, the long-term object creation, 
access, modification, and deletion pattern is optimized, and 
fragmentation minimized. 

4.1.4 Data Structure Design 
For data structures like indexes and global structures, which need 
concurrent access, there are three candidate models of design: 

• Multi-threaded data structure with complex nested 
locking model for synchronization, e.g., step lock in a 
B+tree 

• Lockless data structures 
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• Partitioned, single-threaded data structures 

Aerospike adopts the third approach, in which, all critical data 
structures are partitioned, each with a separate lock. This reduces 
contention across partitions. Access to nested data structures like 
index trees does not involve acquiring multiple locks at each 
level; instead, each tree element has both a reference count and its 
own lock. This allows for safe and concurrent read, write, and 
delete access to the tree, without holding multiple locks. 

These structures are carefully designed to make sure that 
frequently and commonly accessed data has locality and falls 
within a single cache line in order to reduce cache misses and data 
stalls. For example, the index entry in Aerospike is exactly 64 
bytes, the same size as a cache line. 
In production systems like Aerospike, it is not just the functional 
aspects, but also system monitoring and troubleshooting features 
that need to be built in and optimized. This information is 
maintained in a thread-local data structure and can be pulled and 
aggregated together at query time. 

4.1.5 Scheduling and Prioritization 
In addition to basic KVS operations, Aerospike supports batch 
queries, scans, and secondary index queries. Scans are generally 
slow background jobs that walk through the entire data set. Batch 
and secondary index queries return a matched subset of the data 
and, therefore, have different levels of selectivity based on the 
particular use case. Balancing throughput and fairness with such a 
varied workload is a challenge. This is achieved by following 
three major principles. 

1. Partition jobs based on their type: Each job type is 
allocated its own thread pool and is prioritized across 
pools. Jobs of a specific type are further prioritized 
within their own pool. 

2. Effort-based unit of work: The basic unit of work is the 
effort needed to process a single record including 
lookup, I/O and validation. Each job is composed of 
multiple units of work, which defines its effort.  

3. Controlled load generation: The thread pool has a load 
generator, which controls rate of generation of work. It 
is the threads in the pool that perform the work. 

Aerospike uses cooperative scheduling whereby worker threads 
yield CPU for other workers to finish their job after X units of 
work. These workers have CPU core and partition affinity to 
avoid data contention when parallel workers are accessing certain 
data.  

 
Figure 11: Job management 

Concurrent workloads of a certain basic job type in Aerospike are 
generally run on a first-come, first-served basis to allow for low 
latency for each request. The system also needs the ability to 
make progress in workloads like scans and queries, which are 
long-running, and sometimes guided by user settings and/or by the 
application’s ability to consume the result set. For such cases, the 
system dynamically adapts and shifts to round-robin scheduling of 
tasks, in which many tasks that are run in parallel are paused and 
re-scheduled dynamically, based on the progress they can make. 

5. STORAGE 
It is not just the throughput and latency characteristic, but also the 
ability to store and process large swaths of data that defines the 
ability of a DBMS to scale up. Aerospike has been designed from 
the ground up to leverage SSD technology. This allows Aerospike 
to manage dozens of terabytes of data on a single machine. In this 
section, we describe the storage subsystem. 

5.1.1 Storage Management 
Aerospike implements a hybrid model wherein the index is purely 
in memory (not persisted), and data is only on a persistent storage 
(SSD) and is read directly from the disk. Disk I/O is not required 
to access the index, which makes performance predictable. Such a 
design is possible because the read latency characteristic of I/O in 
SSDs is the same, regardless of whether it is random or 
sequential. For such a model, optimizations described in section 
2.2.2 are used to avoid the cost of a device scan to rebuild 
indexes.  

This ability to do random read I/O comes at the cost of a limited 
number of write cycles on SSDs. In order to avoid creating 
uneven wear on a single part of the SSD, Aerospike does not 
perform in-place updates. Instead, it employs a copy-on-write 
mechanism [23] using large block writes. This wears the SSD 
down evenly, which in turn, improves device durability. 
Aerospike bypasses the Operating System’s file system and 
instead uses attached flash devices directly as a block device using 
a custom data layout. 

When a record is updated, the old copy of the record is read from 
the device and the updated copy is written into a write buffer. This 
buffer is flushed to the storage when completely full.  

 
Figure 12: Storage layout 

The unit of read, RBLOCKS, is 128 bytes in size. This increases 
the addressable space and can accommodate a single storage 
device of up to 2TB in size. Writes in units of WBLOCK 
(configurable, usually 1MB) optimize disk life. 

Aerospike operates on multiple storage units of this type by 
striping the data across multiple devices based on a robust hash 
function; this allows parallel access to the data while avoiding any 
hot spots.  
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5.1.2 Defragmentation 
Aerospike uses a log-structured file system with a copy-on-write 
mechanism [23]. Hence, it needs to reclaim space by continuously 
running a background defragmentation process. Each device 
stores a MAP of block and information relating to the fill-factor of 
each block. The fill-factor of the block is the block fraction 
utilized by valid records. At boot time, this information is loaded 
and kept up-to-date on every write. When the fill-factor of a block 
falls below a certain threshold, the block becomes a candidate for 
defragmentation and is then queued up for the defragmentation 
process.  

While defragmenting a block, the valid records are read and 
moved to the new write buffer which, when full, is flushed to the 
disk. To avoid intermixing new writes and old writes, Aerospike 
maintains two different write buffer queues, one for normal client 
writes, and another for records that move while defragmenting. 

In the running system, the blocks continually get fed into this 
queue to be defragmented, which adds to the write rate onto the 
disk. Setting a very high fill-factor threshold (normally 50%) 
increases device burnout rate, while a low setting decreases space 
utilization. Based on available disk buffer space that can be 
immediately consumed by writes (fully empty WBLOCKs), the 
defragmentation rate is adjusted to make sure that there is efficient 
space utilization.  

5.1.3 Performance and Tuning 
5.1.3.1 Post Write Queue 
Instead of maintaining a LRU page cache, Aerospike maintains  a 
so-called post write queue. This is a Least Recently Written 
(LRW) cache of data. There are a lot of application patterns where 
data that is written is immediately read back with temporal 
locality. A replication service, which ships recently changed 
records (as explained in Section 3), has this behavioral 
characteristic. Also, this cache requires no extra memory space 
over and above the write block caching that is used to perform 
writes to the disk. The post write queue improves the cache-hit 
rate and reduces I/O load on the storage device. 

5.1.3.2 Shadow Device  
In the cloud environment, there are devices available with 
different I/O and latency characteristics. For example, in Amazon 
EC2 instances, persistence can be achieved to different degrees by 
using an ephemeral disk (which survives process restarts, but not 
instance restarts) and EBS (which survives both process and 
instance restarts) [8]. Ephemeral devices are fast and attached to 
the instance directly. In contrast, EBS devices are slow and 
attached to the instance over the network. To scale up in systems 
like these, Aerospike employs a shadow device technique where 
writes are concurrently applied locally to the ephemeral storage, 
and remotely to EBS. Reads, however, are always done from 
ephemeral stores that can support much higher random access rate 
than EBS. 

5.1.4 Summary 
Note that SSDs can store an order of magnitude more data per 
node than DRAM. The IOPS supported by devices keep 
increasing; for instance, NVMe drives can now perform 100K 
IOPS per drive [16]. For the past several years, there have been 
several Aerospike clusters with 20-30 nodes that have used this 
setup and run millions of operations/second 24x7 with sub-
millisecond latency [17]. 

6. BENCHMARK RESULTS 
The Aerospike DBMS with the above architecture has been in 
deployment continuously since 2010. In the following sections, 
we present some of the benchmarks we ran to measure the 
scalability of the Aerospike database, and the benchmarking 
results. Note that, unless otherwise stated, all the measurements 
are expressed in single record read/write transactions per second 
(TPS). 

6.1 Scale Up 
Here, we present a set of experiments that demonstrate 
Aerospike’s ability to scale up. We measure performance in terms 
of single-record read/write transaction throughput. The numbers 
were achieved by applying the techniques discussed in section 4. 
Two experiments were performed: one on a non-virtualized 
machine, and another on a virtualized cloud environment. 

6.1.1 Non-Virtualized 
This experiment [3] was performed on a 4 node cluster each with 
8 core dual Socket Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz 
with 32GB DRAM and 1 NIC with 16 queues. Tests were run 
using YCSB [9], which is a popular NoSQL benchmark. 
Aerospike ran with a hybrid configuration under which reads are 
performed from memory and writes are done to both memory and 
to the disk for persistence. 
This experiment was done with the following workload  

• Record containing 10 columns/bins of 10-byte string. 

• 50 million records. 

• YCSB workload A (Balanced 50/50) and workload B 
(Read Heavy 95/5) with Zipfian key distribution. 

 
Figure 13: YCSB benchmark 

As shown in Figure 13, the performance of Aerospike in terms of 
throughput nearly doubled after applying the techniques discussed 
in section 4. 

6.1.2 Virtualized Environment  
With the intention of mimicking real world scenarios, the 
experiments [1] were done on AWS EC2 instances [7]. In order to 
achieve a good spread, runs were performed on a single node 
cluster with instances ranging from low-end m3.xlarge to high-
end r3.8xlarge. Workload was generated using the Aerospike Java 
Benchmark Tools [5]. In this setup, data was not persisted on disk.  
The benchmark was done with the following workload: 
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• Records containing 10 columns/bins of 10-byte string 
each 

• 10 million records 

• 100% read load with normal key distribution 

Figure 14 shows that we were able to achieve up to 1 million TPS 
on a single 8xlarge instance, and that Aerospike’s performance 
scales up linearly as we move to larger and more powerful 
instance types.  

 
Figure 14: Performance on AWS EC2 instance types 

6.2 Scale Out 
This experiment was intended to evaluate Aerospike’s scale out 
capability. Typical cloud deployments start with a low initial size 
and grow as the needs grow. Keep in mind that this set of 
experiments was performed using low-end instances. We 
performed experiments both in Amazon AWS EC2 and in Google 
Compute Engine [14] environments. 

6.2.1 Amazon AWS 
This experiment [26] was done on EC2 instances r3.xlarge 
instance types with the setup described in Section 6.1.2. 

 
Figure 15: AWS – linear scalability 

As shown in the Figure 15, the throughput scales linearly in both 
workloads (read-only and read-write) with the increase in the 
number of nodes from 2 to 8. 

6.2.2 Google Compute Engine 
This experiment [4] was done on n1-standard-8 instances running 
Debian 7 backports OS image. The run was done with data-in-
memory with persistence on 500GB non-SSD disks. The 
experiment was performed with the following setup: 

• Records containing 3 columns/bins of 50 byte string 
each 

• 100 million records 

• a 100% read and 100% write workload 

 
Figure 16: GCE – linear scalability 

The results in Figure 16 show the linear scalability of Aerospike 
with the increase in the number of nodes in the cluster – from 2 to 
10 nodes. 

6.3 Storage 
Aerospike is optimized to handle both in-memory and on-disk 
configurations equally well, as demonstrated by this experiment 
[2]. The setup is similar to the one described in section 6.2.2 with 
10 nodes. The only change is that data is on the local SSD instead 
of on RAM, and both reads and writes hit the disk. 

As shown in Figure 17, Aersopike’s performance on SSDs is 
close to RAM with different workloads. Latencies of SSDs are 
higher than those of RAM and get amplified in the 100% reads 
case as seen in the graph. All the other cases also show a similar 
behavior.  

We have partnered with Intel to check Aerospike’s performance 
on upcoming SSDs. In experiment [6], we traded out DRAM for 
NVM (non-volatile memory) and ran it on Intel(R) Xeon(R) CPU 
E5-2699 v3 @ 2.30GHz with 128GB RAM with P3700 PCIe 
Devices. Aerospike was able to achieve 1 million TPS with sub-
millisecond latencies.  

 
Figure 17: GCE – RAM vs. SSD 

6.4 Summary 
The results demonstrate the scale-out and scale-up characteristics 
of Aerospike, both in non-virtualized and in virtualized 
environments with data in memory and on disk. It highlights the 
high-throughput, low latency, and linear scalability of Aerospike.  

The performance numbers in virtualized cloud environments is 
typically lower than in non-virtualized environments. In contrast 
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to the common belief of slowness due to the overheads of 
virtualization, we found that the limiting factor is generally the 
artificial throttling done by cloud environments. And most of the 
time, it is the network that gets throttled. As things improve in 
networking, this will unleash the potential of Aerospike in cloud 
environments too. 

7. CONCLUSION 
It is now clear that real-time decision systems are spreading fast 
from the Internet to the Enterprise; this trend is accelerating and 
quickly becoming mainstream. The techniques described in this 
paper have helped us harness the high performance of 
contemporary commodity hardware to build a very high-
throughput and low-latency read-write DBMS. We have found 
that this sort of DBMS is much sought after for building a variety 
of real-time decision systems in different industry application 
categories such as Financial Services, Telecommunication, 
Travel, E-Commerce, etc. An important lesson learned here is that 
scaling up on individual nodes of a distributed database is as 
important as scaling out across multiple nodes. In fact, DBMS 
clusters that use powerful nodes with SSDs allow applications to 
scale to Internet levels on much smaller cluster sizes. This, in turn, 
helps Enterprises affordably deploy world-class real-time decision 
systems as sophisticated as the ones that until recently were only 
available at large Internet companies.  
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